Title | Intracellular Generation of Superoxide by TiO2 Nanoparticles Decreases Histone Deacetylase 9 (HDAC9), an Epigenetic Modifier. |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | DT Jayaram, and CK Payne |
Journal | Bioconjugate Chemistry |
Volume | 31 |
Issue | 5 |
Start Page | 1354 |
Pagination | 1354 - 1361 |
Date Published | 05/2020 |
Abstract | Titanium dioxide (TiO<sub>2</sub>) nanoparticles are used on a massive scale in commercial and industrial products. Of specific concern is how the inhalation of these nanoparticles in a manufacturing setting may affect human health. We examine the cellular response to TiO<sub>2</sub> nanoparticles using a combination of cell-free spectroscopic assays, fluorescence microscopy, Western blotting, and TiO<sub>2</sub> nanoparticle surface modifications. These experiments show that TiO<sub>2</sub> nanoparticles generate superoxide, both in solution and in cells, and this intracellular superoxide decreases expression of histone deacetylase 9 (HDAC9), an epigenetic modifier. We use protein coronas formed from superoxide dismutase (SOD) and catalase, enzymes that scavenge reactive oxygen species (ROS), to probe the relationship between TiO<sub>2</sub> nanoparticles, ROS, and the subsequent cellular response. These protein coronas provide nanoparticle-localized scavengers that demonstrate that the nanoparticles are the source of the intracellular superoxide. Importantly, the use of a SOD corona or surface passivated TiO<sub>2</sub> nanoparticles prevents the decrease of HDAC9. These experiments elucidate the underlying mechanism of TiO<sub>2</sub> nanoparticle-mediated cellular responses including oxidative stress and changes in gene expression. They also provide the first demonstration of a protein corona as a tool for probing cellular responses to nanoparticles. Overall, this research shows that low, nontoxic concentrations of TiO<sub>2</sub> nanoparticles alter an enzyme responsible for epigenetic modifications, which points to concerns regarding long-term exposures in manufacturing settings. |
DOI | 10.1021/acs.bioconjchem.0c00091 |
Short Title | Bioconjugate Chemistry |